Adaptive Communication Bounds for Distributed Online Learning
نویسندگان
چکیده
We consider distributed online learning protocols that control the exchange of information between local learners in a round-based learning scenario. The learning performance of such a protocol is intuitively optimal if approximately the same loss is incurred as in a hypothetical serial setting. If a protocol accomplishes this, it is inherently impossible to achieve a strong communication bound at the same time. In the worst case, every input is essential for the learning performance, even for the serial setting, and thus needs to be exchanged between the local learners. However, it is reasonable to demand a bound that scales well with the hardness of the serialized prediction problem, as measured by the loss received by a serial online learning algorithm. We provide formal criteria based on this intuition and show that they hold for a simplified version of a previously published protocol.
منابع مشابه
An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملDifferentially Private Distributed Online Learning
Online learning has been in the spotlight from the machine learning society for a long time. To handle massive data in Big Data era, one single learner could never efficiently finish this heavy task. Hence, in this paper, we propose a novel distributed online learning algorithm to solve the problem. Comparing to typical centralized online learner, the distributed learners optimize their own lea...
متن کاملOn Fundamental Limits of Robust Learning
We consider the problems of robust PAC learning from distributed and streaming data, which may contain malicious errors and outliers, and analyze their fundamental complexity questions. In particular, we establish lower bounds on the communication complexity for distributed robust learning performed on multiple machines, and on the space complexity for robust learning from streaming data on a s...
متن کاملAdaptive Online Learning
We propose a general framework for studying adaptive regret bounds in the online learning framework, including model selection bounds and data-dependent bounds. Given a dataor model-dependent bound we ask, “Does there exist some algorithm achieving this bound?” We show that modifications to recently introduced sequential complexity measures can be used to answer this question by providing suffi...
متن کامل